Diverse Functions of N-Cadherin in Dendritic and Axonal Terminal Arborization of Olfactory Projection Neurons

نویسندگان

  • Haitao Zhu
  • Liqun Luo
چکیده

The cadherin superfamily of cell adhesion molecules have been proposed to play important roles in determining synaptic specificity in developing nervous systems. We examine the function of N-cadherin in Drosophila second order olfactory projection neurons (PNs), each of which must selectively target their dendrites to one of approximately 50 glomeruli. Our results do not support an instructive role for N-cadherin in selecting dendritic targets; rather, N-cadherin is essential for PNs to restrict their dendrites to single glomeruli. Mosaic analyses suggest that N-cadherin mediates dendro-dendritic interactions between PNs and thus contributes to refinement of PN dendrites to single glomeruli. N-cadherin is also essential for the development of PN axon terminal arbors in two distinct central targets: regulating branch stability in the lateral horn and restricting high-order branching in the mushroom body. Although the N-cadherin locus potentially encodes eight alternatively spliced isoforms, transgenic expression of one isoform is sufficient to rescue all phenotypes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genetic Basis of Neuronal Individuality in the Mammalian Brain

The mammalian brain is a complex multicellular system involving enormous numbers of neurons. The neuron is the basic functional unit of the brain, and neurons are organized by specialized intercellular connections into circuits with many other neurons. Physiological studies have revealed that individual neurons have remarkably selective response properties, and this individuality is a fundament...

متن کامل

From Lineage to Wiring Specificity POU Domain Transcription Factors Control Precise Connections of Drosophila Olfactory Projection Neurons

Axonal selection of synaptic partners is generally believed to determine wiring specificity in the nervous system. However, we have recently found evidence for specific dendritic targeting in the olfactory system of Drosophila: second order olfactory neurons (Projection Neurons) from the anterodorsal (adPN) and lateral (lPN) lineages send their dendrites to stereotypical, intercalating but non-...

متن کامل

Development of wiring specificity of the Drosophila olfactory system.

The central problem of neural circuit assembly is how wiring specificity is achieved. The Drosophila olfactory neural circuit presents a fascinating system to attack this problem. As in mammals, the Drosophila olfactory receptor neurons (ORNs) that express a given receptor converge their axons onto a common glomerulus in the antennal lobe, creating an odor map in this first olfactory structure ...

متن کامل

Potential dual molecular interaction of the Drosophila 7-pass transmembrane cadherin Flamingo in dendritic morphogenesis.

Seven-pass transmembrane cadherins (7-TM cadherins) play pleiotropic roles in epithelial planar cell polarity, shaping dendritic arbors and in axonal outgrowth. In contrast to their role in planar polarity, how 7-TM cadherins control dendritic and axonal outgrowth at the molecular level is largely unknown. Therefore, we performed extensive structure-function analysis of the Drosophila 7-TM cadh...

متن کامل

Olfactory bulb axonal outgrowth is inhibited by draxin.

Olfactory bulb (OB) projection neurons receive sensory input from olfactory receptor neurons and precisely relay it through their axons to the olfactory cortex. Thus, olfactory bulb axonal tracts play an important role in relaying information to the higher order of olfactory structures in the brain. Several classes of axon guidance molecules influence the pathfinding of the olfactory bulb axons...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neuron

دوره 42  شماره 

صفحات  -

تاریخ انتشار 2004